1 research outputs found

    Distributed Approximation of Maximum Independent Set and Maximum Matching

    Full text link
    We present a simple distributed Δ\Delta-approximation algorithm for maximum weight independent set (MaxIS) in the CONGEST\mathsf{CONGEST} model which completes in O(MIS(G)logW)O(\texttt{MIS}(G)\cdot \log W) rounds, where Δ\Delta is the maximum degree, MIS(G)\texttt{MIS}(G) is the number of rounds needed to compute a maximal independent set (MIS) on GG, and WW is the maximum weight of a node. %Whether our algorithm is randomized or deterministic depends on the \texttt{MIS} algorithm used as a black-box. Plugging in the best known algorithm for MIS gives a randomized solution in O(lognlogW)O(\log n \log W) rounds, where nn is the number of nodes. We also present a deterministic O(Δ+logn)O(\Delta +\log^* n)-round algorithm based on coloring. We then show how to use our MaxIS approximation algorithms to compute a 22-approximation for maximum weight matching without incurring any additional round penalty in the CONGEST\mathsf{CONGEST} model. We use a known reduction for simulating algorithms on the line graph while incurring congestion, but we show our algorithm is part of a broad family of \emph{local aggregation algorithms} for which we describe a mechanism that allows the simulation to run in the CONGEST\mathsf{CONGEST} model without an additional overhead. Next, we show that for maximum weight matching, relaxing the approximation factor to (2+ε2+\varepsilon) allows us to devise a distributed algorithm requiring O(logΔloglogΔ)O(\frac{\log \Delta}{\log\log\Delta}) rounds for any constant ε>0\varepsilon>0. For the unweighted case, we can even obtain a (1+ε)(1+\varepsilon)-approximation in this number of rounds. These algorithms are the first to achieve the provably optimal round complexity with respect to dependency on Δ\Delta
    corecore